Design Space Exploration of Split-Path Data Driven Dynamic Full Adder

نویسندگان

  • Sohan Purohit
  • Marco Lanuzza
  • Martin Margala
چکیده

This paper presents the design, the analysis and the complete characterization of a novel split-path Data Driven Dynamic (sp-D3L) full adder cell in IBM’s 65 nm CMOS process. The split path D3L design style derived from standard D3L allows the design of high speed dynamic circuits without the power overhead of the clock tree while providing significantly higher performance than the D3L due to reduced capacitance at the pre-charge node. To demonstrate the performance benefits of the new split-path dynamic approach, we present comparison of the proposed adder with conventional static and dynamic adder cells. All the adder circuits were characterized for speed, power, area, noise margins, supply voltage scaling as well as fan-out capabilities. To evaluate the combined impact of load driven by the adder and load presented by the adder to the driving circuit, a combined fan-infan-out analysis with varying loads was also performed. Monte Carlo simulations were performed to evaluate the reliability of the adder design against random process, voltage and temperature variations. To compare with state of the art, we also performed a comparison of our proposed adder with several low power as well as high performance adders proposed recently in literature. Furthermore, to simulate the behavior of the adder in data path elements, we built ripple carry adders of varying lengths using the proposed adder. The new design was found to achieve from 16% to 27% performance advantages over its static and dynamic counterparts at nominal supply voltage. With supply voltage scaled from 1 V to 0.8 V, the adder shows 12%, 34% and 39% PDP advantage over domino, static and conventional D3L designs respectively. Fan-out analysis showed the adder to perform with 11% to 41% better PDP than the others at worst case FO32 loading.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design of High Performance Split Path Data Driven Dynamic Full Adders

Addition is a fundamental arithmetic operation which is used in different applications such as digital signal processing (DSP) and microprocessors. Single bit adder is the main component of any arithmetic circuit. This paper presents the design of new split-path Data Driven Dynamic (sp-D3L) full adder circuit. Power consumption of proposed adder varies from 0.584 nW to 2.914 nW with variation i...

متن کامل

A High-Speed Dual-Bit Parallel Adder based on Carbon Nanotube ‎FET technology for use in arithmetic units

In this paper, a Dual-Bit Parallel Adder (DBPA) based on minority function using Carbon-Nanotube Field-Effect Transistor (CNFET) is proposed. The possibility of having several threshold voltage (Vt) levels by CNFETs leading to wide use of them in designing of digital circuits. The main goal of designing proposed DBPA is to reduce critical path delay in adder circuits. The proposed design positi...

متن کامل

A Low Power Full Adder Cell based on Carbon Nanotube FET for Arithmetic Units

In this paper, a full adder cell based on majority function using Carbon-Nanotube Field-Effect Transistor (CNFET) technology is presented. CNFETs possess considerable features that lead to their wide usage in digital circuits design. For the design of the cell input capacitors and inverters are used. These kinds of design method cause a high degree of regularity and simplicity. The proposed des...

متن کامل

Low-Power Adder Design for Nano-Scale CMOS

A fast low-power 1-bit full adder circuit suitable for nano-scale CMOS implementation is presented. Out of the three modules in a common full-adder circuit, we have replaced one with a new design, and optimized another one, all with the goal to reduce the static power consumption. The design has been simulated and evaluated using the 65 nm PTM models.

متن کامل

Comparative Analysis of Noise, Power, Delay and Area of Different Full Adders in 45nm Technology

VLSI Circuit Design is a significant subject for instance like adders and multipliers for the implementation of a various of logic and arithmetic functions likes of basic circuit approach and topology. Full adders like digital signal processors (DSP) architectures and microprocessors are vital elements in the application. Apart from that, the adding of two numbers is main assignment. it's key t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Low Power Electronics

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2010